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We used a nonlinear control law based on cubic ve-
locity feedback to suppress the vibrations of a struc-
tural dynamic model of a twin-tail assembly of an
F-15 fighter that is subjected to a principal para-
metric excitation. The performance of the control
law was studied after conducting a stability analy-
sis for the open- and closed-loop responses of the
system. FUrthermore, we conducted experiments to
verify the theoretical analysis using piezoelectric ac-
tuators. The theoretical and experimental findings
indicate that the control law not only leads to ef-
fective vibration suppression, but also to effective
bifurcation control.

Buffeting is defined as the structural response of
aircraft structures (such as wings and tails) to un-
steady flowl• A typical fighter aircraft, such as the
F-15, performs maneuvers at high angles of attack
(AOA). Depending on the angle of attack and the
free stream velocity, vortical flows impinge on the
tails and create large dynamic responses, which re-
sult in large dynamic loads and stresses throughout
the tail structure. These loads may excite different
structural modes that cause severe structural fatigue
damage and premature structural failure. Thus it is
important to reduce the unwanted vibrations caused
by buffet loads and thus extend the fatigue life of the
F-15 vertical tails.

Several means have been proposed to achieve
this goal: (a) passive or active control techniques,
(b) reduction of the buffet loads by altering the flow-
field around the vertical tails, and (c) changing the
load-carrying structure within the tail.

During the ACROBAT (Actively Controlled Re-
sponse of Buffet Affected Tails) program, Moses2
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used feedback control to the rudder on the starboard
fin and to the piezoelectric patches on the port fin.
Reductions up to 60 % in the peak value of the PSD
of the root bending moment at the frequency of the
first bending mode were observed at gains well be-
low the physical limits of the actuators. He noted
that the performance of the control law appeared to
deteriorate as the AOA was increased. He, also, an-
ticipated that significant improvements in the per-
formance of buffet load alleviation over the entire
range of AOA may be achieved by using adaptive
control methods that adjust the parameters of the
control law based on the AOA.

Moore et ai.3 developed a state-space aeroser-
voelastic model that incorporates 1) a finite ele-
ment model of the tail structure, 2) an aerody-
namic model, which accounts for the aerodynamic
inertia damping and stiffness, and 3) a gust distur-
bance model to replicate the buffet spectrum. The
aeroservoelastic model provide the predicted strain
levels and accelerations on the tail. An optimization
analysis was performed to place the minimum vol-
ume of the piezoelectric actuator while maximizing
its authority. Finally, a multi-input, multi-output
controller was designed using the linear quadratic
Gaussian technique. The effective reduction ob-
tained was estimated to be 57% which exceeds their
goal of 50%.

Lazarus et al.4 developed a finite element struc-
tural model of the F/ A 18 vertical tail. They sim-
ulated the effect of the piezoelectric actuators on
the vertical tail. They developed the unsteady aero-
dynamic forces using the kernel function method
and nonlinear fitting techniques. They analyzed the
aerodynamic behavior of the lifting surface by com-
bining the structural model and the aerodynamic
model in a state-space representation. They used
the available gust disturbance data to include a buf-
fet disturbance model to their overall model. They
realized a greater than 50 % reduction in the RMS
strain for less than an 8 % increase in the weight of
the vertical tail.

Bean et al.5 measured the buffeting response lev-
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els on a flexible fin and the unsteady pressure on
a rigid fin of similar planform for 60° delta wings
with twin fin configurations. They used a laser light
sheet visualization technique to determine the vor-
tical flow over the wings. Thus obtained buffet-
ing reductions using tangential leading edge blowing
(TLEB). The idea behind TLEB is to inject a thin
tangential jet into the cross flowboundary layer near
the leading edge and thus enable control of the vor-
tex equilibrium condition at a given AOA. TLEB,
therefore, can be considered as a means of reducing
the "effective angle of attack" of the vortex. They
concluded that a symmetric TLEB at a blowing mo-
mentum coefficient of 0.05 induces a linear shift in
the buffeting excitation and response. Larger blow-
ing rates can reduce the overall buffet excitation lev-
els and hence substantially reduce the buffeting re-
sponse levels.

Ferman et al.6 added composite skin doublers
or "exoskin" to the main torque box asa mean of
stiffness modification. The F-15 stiffness modifica-
tions accomplished a 40 % increase in the overall
sectional bending stiffness through the use of a pre-
cured, cold-bonded, carbon epoxy lay-up. This ap-
proach has achieved nearly an order-of-magnitude
improvement in fatigue life. Also, selective stiffen-
ing of the main torque box by the bond-on exoskin
is a simple concept for reducing buffet related vibra-
tion and fatigue.

Passive techniques, such as the reinforcement of
the structure, can be quite effective and are desirable
from the standpoint of simplicity and cost. How-
ever, they increase the overall weight of the aircraft,
thereby impairing the aircraft's performance. Also,
when employed in the F-15 vertical tail, the buffet
problem persisted and the cracks were chased from
one area to another.

All these papers dealt either with only one tail
counting on symmetry or with two tails one rigid
and the other flexible. These papers thus missed the
interaction between the two tails. According to Fer-
man et al.6, the structural response characteristics
of the left and right vertical tails of the F-15 air-
craft are distinctly different. This is primarily due
to structural differences in the tip pods, with the
left tail being more prone to fatigue than the right
tail. Thus, we use a model7 that allows flexibility of
both tails. Also, the model takes into consideration
coupling between the two tails. In the experiments,
we were able to excite parametrically the twin-tail
assembly, hence avoiding any additional masses that
might affect the response of the tails.

As it is well-known8 in the case of parametric ex-
citation, adding damping to the tails will not limit

the amplitude of oscillations once the threshold ex-
citation level is exceeded. In fact, adding damping
to the tails will only increase the threshold. Con-
sequently, adding damping is not a robust way of
controlling the tail vibrations since at high AOA the
tails are subjected to extremely high excitation lev-
els. For this reason, we used a nonlinear control law
that was developed by Oueini et al.9 to suppress the
vibrations of parametrically excited systems. They
fedback the cube of the velocity signal to suppress
the first mode vibrations of a cantilever beam. We
extend their approach by employing a controller for
each tail and thus reducing the interaction between
the two tails. The maximum response occurs when
the excitation frequency is near twice the natural fre-
quency of either of the vertical tails; that is, principal
parametric resonance. Thus we use the control law
to suppress the tail vibrations at this frequency.

The response of the twin-tail assembly to a prin-
cipal parametric excitation can be modeled by the
following two mass normalized second-order coupled
differential equations7:

ill + W~U1 + 2fJL1 Ul + WI u~ + fJL3U1 I U1 I
- fk(U2 - Ul) = fUl'l71Fcos(Ot + 1"1) + C1 (1)

U2 + W~U2 + 2fJL2U2 + w2t4 + fJL4U2 I U2 I
- fk(Ul - U2) = fU2112Fcos(!U + 1"2) + C2 (2)

where Ul and U2 denote the generalized coordinates
of the first bending modes of the twin tail assembly,
WI and W2 are the lowest linear natural frequencies
of the right and left tails, 2JLland 2JL2 are the lin-
ear damping coefficients, (}:1 and (}:2 are the coeffi-
cients of the cubic nonlinearity, 1L3 and 1L4 are the
aerodynamic damping coefficients, k is the coupling
coefficient of the twin tails, 111 FU1 cos(Ot + rd and
112Fu2 coS(Ot+1"2) are the parametric excitations, 111

and 112 are transmissibility terms that make the units
of the whole equations consistent, and C1 and C2 are
the control forces. The parameters in Eqs. (1) and
(2) were identified using experimental data7• They
are listed in Appendix A. We consider a control law
given by C1 = -fG1U~ and C2 = -fG2u~, where
G1 and G2 are positive constants. Here f is a book-
keeping parameter, which can be set equal to unity
in the final analysis.

To quantitatively describe the nearness of the
resonances, we introduce the detuning parameters
0'1 and 0'2 defined by 0 = 2wl + 1:0'1 and W2 =
WI + f0'2. We use the method of multiple scaleslO to
generate a first-order approximate solution of Equa-
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tions (1) and (2).

UI = Un (To, TI) + fUI2(To, Tt} +... (3)

U2 = U21(To, TI) + fU22(To,Tt} +... (4)

where To = t is a fast time scale and TI = d is a
slow time scale.. In terms of To and TI·, the time
derivatives become

d2
- = D~ + 2e.DoDI + ... (5)
dt2

where Dn = -k;. Substituting Eqs. (3)-(5) into
Eqs. (1) and (2) and equating coefficientsoflike pow-
ers of e. yields
Order 1

D~un+w~uu = 0
D~U2I +W~U21 = 0

DgUI2 + W~UI2 = -2DoDIUn - 21LIDoun - aIu~1
+ 111kl(U2I - uu) - GI(Doun)3 -1L3DouU
x I Doun I +l1IUnFcos(Ot+TI) (8)

D5U22 + W~U22 = -2DoDIU21 - 21L2DOU21 - a2u~1
+ 112k2(Un - U2l) - G2(DoU21)3 -1L4DOU21
x I DOU21 I +112'u21F cos(Ot + T2) (9)

The general solutions of Eqs. (6) and (7) can be
written as

un = AI(TI)eiwlTo +.th(TI)e-iwlTo (10)
U21 = A2(TI)eiw~To + A2(Tde-iw~To (11)

where the Ai(Tt} are determined by eliminating the
secular terms from the next-order approximation.
Substituting Eqs. (10) and (11) into Eqs. (8) and
(9) yields

D~UI2 + W~U12 = _2iwlA~eiwlTo - 21LliwlAleiw17b
+ 711k(A2eiW2To _ AleiwlTo) _ alA~e3iwlTo

_ 3alA~AleiwlTo + ~7JIFAlei[<-o+wdTO-'Tl]

+ !.7JIFAlei[<O+wtlTo+'Tt]-1L3[(iwlAleiwlTO)
2

x liwIAleiwlT0I]- G1 [ - iw~A~e3iwlTo

+ 3iw~A~AleiWlTo] + cc (12)

2 2 ,'r. 'r.DOU22 + W2u22 = -2~A2e'W2 0 - 21L2~A2etW~ 0

+ 7J2k(A2eiW2To - A2eiW~To) - a2A~e3iw~To

- 3a2A~A2eiw~To + !7J2FA2ei[(-O+W~)TO-'1'2]
2

+ !.7J2FA2ei[(O+W2)To+'T2] _ J.L4[(~A2eiW2To)
2

x liw2A2eiw2TolI- G2 [ - iw~A~e3iw~To

+ 3iw~A~A2eiW2To] + cc (13)

Eliminating the terms that produce secular terms in
Eqs. (12) and (13) yields

2iw1A~ + 21LliwiAI = 71lkA2eiCT2Tl - 3aIA~AI
4 2 2 '(3 3 2-- 71lkAl -i31r1L3Wlale' 1 -3GIiwIAIAI

+ !.71IF(At}ei(CTITl+'Tl) (14)
2

2iw2A~ + 21L2iw2A2 = 7J2kAle-iCT~Tl - 3a2A~A2

kA . 4 2 2 i{3~ 3G' 3A2A-
- 7J2 2 - ~31r1L4W2a2e - 2~2 2 2

+ !7J2F(A2)ei(CTITl-20'~Tl +'1'2) (15)
2

Rewriting the Ak in terms of Cartesian coordi-
nates

Ak = ~[Pk(Tt} - iqk(Tl)]e(iV/oTl+t'T/o), k = 1,2
(16)

and separating Eqs. (14) and (15) into real and imag-
inary parts, we obtain the modulation equations

P~ = - 3~1L3WIPI JPf + q~ - ~I 11Ikq2 + 2~171lkql

3 2 3 3 71IF
+ 8w1alPlql + 8w1aIql + 4w1 qi - VIql

3 2 3 2-lLIPI - gGIWI (PI + PIql) (18)

q~ = -3
4

/L3wIql· /Pf + q~ + -2
1

7JlkP2 - -2
1

711kpl1r y. WI WI
3 3 3 2 TJ1F

--aIPI - -alP!ql + --PI + VIPI8w1 8w1 4w1

3 2 2 3-/Llql - gGIWl(Plql +ql) (19)

3
American Institute of Aeronautics and Astronautics



The performance of the control is evaluated by
calculating the equilibrium solutions of Eqs. (18)-
(21) and examining their stability as a function of
the parameters F, 0'1, and the Gi• We set the
time derivatives in Eqs. (18)-(21) equal to zero and
solve the resulting system of algebraic equations for
PI, q1 ,P2 and q2 for a specified value of either 0'1,

which is a measure of the detuning of the principal
parametric resonance, or F, which is a measure of
the forcing amplitude. The amplitudes al and a2
of the responses of the two tails is then calculated
from ai = JP'f +qt. Since there is no closed-form
solution for the four algebraic equations, we resorted
to numerical techniques. Numerical integration of
the modulation equations for different sets of initial
conditions was used to locate some of the possible
solutions for a given 0'1 and F. Then, starting with
these solutions, we used a pseudo arclength schemell
to trace the branches of the equilibrium solutions by
varying either 0'1 or F.

The stability of a particular equilibrium solution
is determined by examining the eigenvalues of the
Jacobian matrix of the right-hand sides of Eqs. (18)-
(21). If the real part of each eigenvalue is negative,
the corresponding equilibrium solution is asymptoti-
cally stable. If the real part of any of the eigenvalues
is positive, the corresponding equilibrium solution is
unstable. In the next two sections, we perform the
stability analysis and evaluate the control law.

Tn Fig. 1, we show the open- and closed-loop
force-response curves. First, we consider the open-
loop response. When F < 2.5 9, only the trivial
solution exists. In the absence of large disturbances,
it is maintained as F is increased. When F reaches
3.55 g, the trivial solution looses stability through
a subcritical pitchfork bifurcation, and the response
amplitude jumps up to the high-amplitude responses
in curves (a). A further increase in F leads to a
higher response amplitude of the left tail and a lower

response amplitude of the right tail. When F is de-
creased, the response undergoes a saddle-node bi-
furcation, and the left-tail response jumps down to
either another low-amplitude response or the trivial
solution. In this region, again the right-tail response
amplitude either (a) remains constant (but the phase
between the oscillations of the two tails changes) or
(b) drops to the trivial solution, depending on the
disturbance level.

Second, we consider the response of the closed-
loop response. When G1 = G2 = G = 0.01, the
response curves are similar to the uncontrolled re-
sponse curves. The bifurcations are identical, how-
ever, the location of the saddle-node bifurcation is
shifted in the case of the right tail and one solution
is completely eliminated. On the other hand, for
the left tail, the jump-up and jump-down due to the
saddle-node bifurcations are eliminated, as shown
in curves (b). As the controller gain is further in-
creased, the saddle-node arid subcritical pitchfork bi-
furcations are replaced with one supercritical pitch-
fork bifurcation at F = 3.5 g. Additionally, the
amplitude of the response is further reduced.

4. Analytical Frequency-Response
Curves

In Fig. 2, we show the frequency-response curves
of the open- and closed-loop system for both the
right and left tails. The response amplitudes depend
on the value of 0'1 and the system's initial conditions.
The solid lines correspond to stable solutions, while
the dashed lines correspond to unstable solutions.
All of the bifurcations are saddle-node and pitchfork
bifurcations. The latter are approximately at the
frequencies 19.0 Hz and 21.6 Hz.

We consider first the open-loop response (curves
(a) in Fig. 2). The left-tail response is larger than
that of the right tail in the frequency range 18.5 till
21.6 Hz. In the frequency range 18.5 Hz till 19.8
Hz, there is another solution where the left-tail re-
sponse is again larger than the right-tail response.
A third solution exists in the frequency range 17.4
Hz to 18.6 Hz where the right-tail response is larger
than that of the left tail. We note that the trivial
solution loses stability at an excitation frequency of
19.0 Hz through a subcritical pitchfork bifurcation
in the forward sweep and at 21.6 Hz in the reverse
sweep through a super critical pitchfork bifurcation.

Next, we consider the response of the closed-
loop system. Curves (b-e) all show the responses of
both the right and left tails as the controller gain
is increased. It is clear that, as the controller gain
increases, the response amplitudes of the tails de-
crease. Also, the bandwidth where the different
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responses occur decreases. For example, curve(e),
the different coexisting responses in the frequency
range 17.3 Hz to 19 Hz are completely eliminated.
Also, all of the dangerous subcritical bifurcations are
changed to safe supercritical bifurcations and hence
the jumps are eliminated.

5. Experiments
The theoretical analysis is verified by imple-

menting the control strategy on the twin-tail assem-
bly fitted with piezoceramic actuators and strain
gages. The assembly is excited vertically, thereby
subjecting the first modes of the twin tails to a prin-
cipal parametric resonance.

5.1 Setup and Procedure

The tail section used in the experiments is a 1/16
dynamically scaled model of the F-15 tail assem-
bly. The model was constructed by Professor Sathya
Hanagud of the Georgia Institute of Technology from
a series of aluminum channels, brass rings, compos-
ite plates, metal masses, and various adhesives, as
shown in Fig. 3(i). The model is approximately
0.355 m long, 0.228 m tall, and 0.482 m wide.

The tail deflections are measured with a series
of four strain gages. The centers of the gage pairs
are 0.9 em and 8.5 em from the top of the aluminum
channels. One pair is on the outside of the right ver-
tical tail; the other pair is on the outside of the left
vertical tail. The strain gages are aligned to mea-
sure the bending moments. Changes in the gages
are measured with a strain gage conditioning ampli-
fier, in a quarter bridge configuration. The actuators
used are two patches of the piezoelectric material
lead-zirconate-titanate. One patch is installed near
the root of each tail. The dimensions of the patches
used are 7 x 3.5 x .019 em.

A series of bolts and several positioning blocks
fixes the model to a 250-lb shaker. The shaker ex-
citation is measured with an accelerometer studded
to the base. The accelerometer signal is conditioned
with an amplifier. The shaker amplifier is driven
with a signal generator. The strain gage signal from
the conditioner is fed to the controllers, and the non-
linear control signal is generated, amplified, and sent
to the actuators. The responses of the tails and the
circuit and the accelerometer signals are monitored
using a four-chamiel signal analyzer and an oscillo-
scope and collected by a data acquisition computer
software. Figure 3 (ii) shows the experimental setup.

5.2 Controller Circuit

A hardware controller circuit was built and used

with a low-pass filter to generate the cubic veloc-
ity signal out of the strain gage signal. The essential
components of the circuit includes operational am-
plifiers (op-amps), two analog multipliers, and other
miscellaneous hardware components. The op-amps
were used only as buffers between the input and out-
put signals and the circuit, and thus isolate the cir-
cuit from the other high-power components. Analog
multipliers were utilized to generate the nonlinear
term. A chip is connected to perform high-precision
(0.1% typical error) 4-quadrant voltage multiplica-
tion according to the following relationship:

Vi - V2
Vout = ---

V3 - V4

where VOtlt is the output voltage of the multiplier
and the Vi are the input voltages. Four multipliers
are dedicated to the circuit, two for each tail. The
remaining circuit components include high-precision
potentiometers, metal film resistors, and polystyrene
capacitors.

5.3 Location of the Actuators

The goal is to maximize the control authority that
can be generated by the actuator; in our case, it
is equivelant to maximizing the resultant forces that
the actuator develops. Ideally, more actuators would
be placed in the areas of high strain than in the ar-
eas of low strain. To determine these locations, we
glued two strain gages to each tail. One gage at the
root and the other at the middle of the tail. Under
parametric excitation, we realized that the largest
modal response measured by the gage is at the root.
Thus we decided to locate the actuators there. It is
expected that placing the actuator at any location
would stiffen that area and thus reduce the effec-
tiveness of the actuator. However, in our case this is
not a problem because the actuator thickness is 1.9
mm. This was confirmed by comparing the force-
and frequency-response curves before and after at-
taching the PZT to the tails. These curves show
that the tail dynamics did not change much. For a
full scale fighter tail under buffet loads, the actua-
tor placement should be optimized for high perfor-
mance. Moses2 provided a good example of such an
analysis.

6. Experimental Frequency-Response
Curves

We forced the twin-tail assembly at 3.1 9 and
conducted forward and reverse frequency sweeps.
The acceleration of the shaker head was monitored,
and the input voltage driving the shaker head was
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adjusted to maintain a constant forcing amplitude.
In Figs. 4 and 5 , we exhibit the open- and closed-
loop frequency-response curves for the right and
left tails for both the in-phase and out-of-phase re-
sponses.

First, we describe the open-loop case. Initially,
as the forcing frequency was increased, the ampli-
tude remained at zero. When the frequency reached
a value close to 19.0Hz for the in-phase response and
17.6 Hz for the out-of-phase, the response jumped
up (a subcritical pitchfork bifurcation). We note
that for the in-phase response the left-tail response is
greater than that of the right tail, while for the out-
of-phase response the right tail response is greater
than that of the left tail. FUrther increases in the ex-
citation frequency lead to a decrease in the response
amplitudes. When the frequency was approximately
19.5Hz, the tails stopped oscillating (a supercritical
pitchfork bifurcation). Thus, the response remained
at zero. In the reverse sweep, the response was simi-
lar to that observed during the forward sweep. How-
ever, the response amplitude did not experience a
jump down at 19.0 Hz in the case of the in-phase re-
sponse. Instead a growth rate was observed, leading
to a very high response amplitude. A jump down
to zero occured at 18.5 Hz (a saddle-node bifurca-
tion). For the out-of-phase response, the forward
and reverse sweeps were almost similar except that
the jump down of the left-tail response occured at a
frequency of 18.5 Hz instead of 19.0 Hz, thereby ex-
periencing a large-amplitude response before under-
going a saddle-node bifurcation and jumping down
to the trivial response.

Second, we describe the in-phase and out-of-
phase frequency-response curves in the closed-loop
case. As the forcing frequency was increased, the
response remained at zero until the point of subcrit-
ical bifurcation where the gain of the controller had
to be increased to drive the response to zero. During
the reverse sweep, the response amplitude traced the
same curve observed during the closed-loop forward
sweep. Thus the control law did its job. In fact,
we performed another sweep starting with a higher
gain and attained a zero-response during the entire
sweep.

7. Experimental Force-Response
Curves

We forced the twin-tail assembly at a constant
frequency of 18.6 Hz and conducted forward and re-
verse sweeps for both the in-phase and out-of-phase
responses. From. the experiments, the forward and
backward sweeps show similar trends, and thus we
only show the forward sweeps in Fig. 6.

First, we describe the open-loop response. As
the forcing amplitude was increased, the tails did
not oscillate initially. When the forcing amplitude
reached approximately 2.85 9 in the in-phase case
and 2.82 9 in the out-of-phase case, the response
experienced a jump (a subcritical pitchfork bifur-
cation) to a high-amplitude response. FUrther in-
creases in the forcing amplitude lead to an increase
in the response amplitude. We note that, at this fre-
quency of excitation, the right-tail response is larger
than that of the left tail and vice-versa, depending
on the initial condition (the way we pluck the tails).

Second, we examine the closed-loop response.
The gains of the controller circuit were chosen to
ensure a trivial response of the tails at all excitation
levels.

In order to examine the transient characteris-
tics of the control law, we subjected the tails to a
forcing level of 3 9 and applied control to the worst
case scenario of both tails; that is, the right tail was
excited at 17.5 Hz and left tail was excited at 18.5
Hz. Figure 7 shows the two time traces for G1 = 1
and G2 = 5G1• Clearly, increasing the feedback gain
resulted in a better transient performance.

S. Conclusions

A nonlinear control law was used to suppress the vi-
brations of the first bending modes of the twin tails
of a 1/16 structural dynamic model of an F-15 twin-
tail assembly when subjected to a principal para-
metric excitation. The dynamics of the first flexural
modes of the twin tails were modeled by two second-
order coupled nonlinear ordinary-diffferential equa-
tions. A control law based on cubic velocity feed-
back was used. The method of multiple scales was
employed to derive four first-order differential equa-
tions governing the amplitudes and phases of the re-
sponse. Then a bifurcation analysis was conducted
to examine the stability of the closed-loop system
and to investigate the performance of the controller
and the effect of the feedback gain on the response.
Due to the feedback control law, all of the subcrit-
ical pitchfork bifurcations were replaced by safe su-
percritical ones. The bandwidth of nontrivial solu-
tion was reduced, and thus the range of frequencies
where the tails can oscillate in high amplitude was
reduced. Also, the amplitudes of oscillation of the
tails decreased as the gain of the feedback control
law increased. Also, increasing the gain improved
the transient performance.

We verified the theoretical results with exper-
iments conducted on the structural model of the
twin-tail assembly fitted with piezoceramic actua-
tors. An electronic circuit was used to generate the
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cubic velocity feedback signal. Good agreement be-
tween theory and experiments was obtained.
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We estimated the parameters of the model from re-
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identified parameters for the right tail are (1 =
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Figure 1: Effect of varying the feedback gain
on the force~response curves of the specified tail
(freq=18 Hz): a) G=O, b) G=O.Ol, c) G=O.05,
d) G=O.l, and e) G=1.
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Figure 2: Effect of varying the feedback gain on the
frequency-response curves of the specified tail (F =
3.2 g): a) G=O, b) G=O.Ol, c) G=O.l, d) G=l, and
e)G=lO.
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Figure 3: (i) Three-dimensional view of the twin-tail
assembly and (ii) experimental setup. Figure 4: Frequency-response curves of the in-phase

responses before and after control.
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Figure 5: Frequency-response curves of the out-of-
phase responses before and after control

Figure 6: Force-response curves of the tails before
and after control.
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Figure 7: Time histories of the responses of the tails
before and after applying control for different control
gains (a) G2 = 5G1• and (b) G} = 1.
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